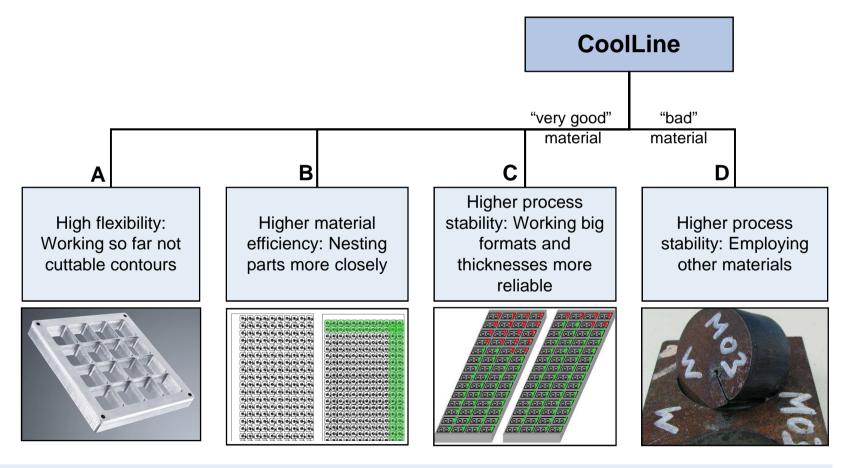
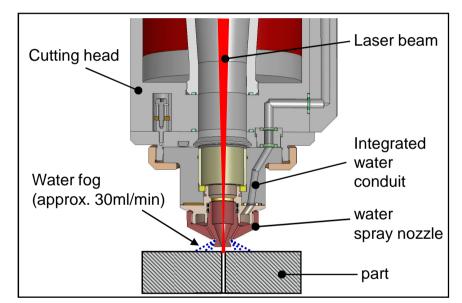


CoolLine: Increased process stability & more contour flexibility in thick mild steel

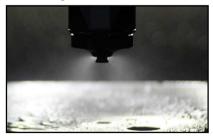

Version 2

Tobias Reuther / Simon Kosi Product marketing TruLaser TRUMPF Werkzeugmaschinen GmbH + Co. KG Ditzingen Oktober 2011

Overview: CoolLine can be used in different ways.


CoolLine © TRUMPF - vertraulich

TRUMPF



Design and functionality.

- Functionality:
 - Water is sprayed coaxial to the cutting process
 - Cooling effect by boiled water (cooling power approx. 1kW at 30ml/min of water)
- Customer benefits:
 - Increased process stability when cutting low quality material
 - reduced material costs when cutting high quality material

Function principle with adopted cutting head and new nozzles.

A) Higher flexibility: Thinking in new geometries.

Reason for problem:

Small amounts of material (slats) collect lot of heat.

 \rightarrow local overheating has a bad influence on

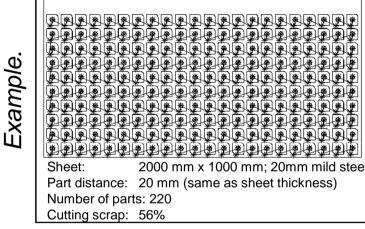
the cutting process

CoolLine © TRUMPF - vertraulich

Result:

Filigree contours in higher sheet thickness are not possible to cut.

Measure: Local cooling with CoolLine

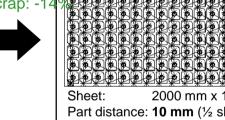

Benefit: Smaller slats are cuttable

TW254rr/ki - October 2011

TRUMPF

B) Higher material efficiency: Nesting parts more closely

Reason for problem:


Thick, big sheets collect heat.

 \rightarrow Increasing material overheating.

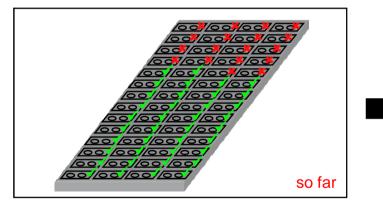
Result:

Minimum distance at nesting is big, furthermore segmenting big sheets to obviate heat transfer

Sheet:2000 mm x 1000 mm; 20mm mild steelPart distance:10 mm (½ sheet thickness)Number of parts:288Cutting scrap:42%

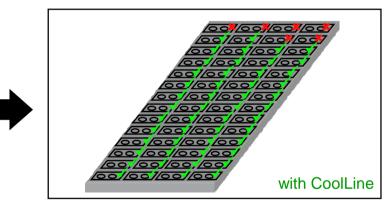
Measure:

Local cooling with CoolLine


Benefit:

Nesting more closely with high quality material is possible. → more material efficiency

C) Higher process stability: Working big sheets and thicknesses more reliable


Reason for problem:

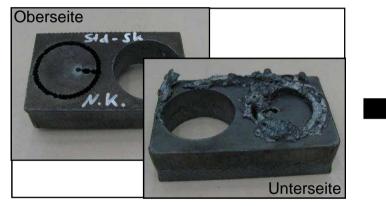
Thick, big sheets collect heat.

→ Increasing material overheating, process could be instable

Result:

Rejects and higher material costs

Measure: Local cooling with CoolLine


Benefit:

Cutting with higher process stability and less rejects


D) Higher process stability: Using other materials

Reason for problem: Unsteady material configuration and different surfaces

Result:

For high process stability in general only high quality and thus expensive material can be employed.

Measure: Local cooling with CoolLine

Benefit:

Cutting of less expensive materials with higher process stability

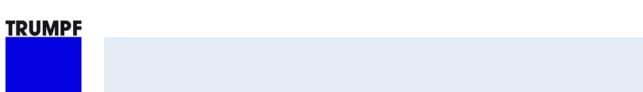
Differentiation: AdjustLine vs. CoolLine.

	AdjustLine	CoolLine
Functionallity	 ERHÖHTE MATERIALTOLERANZ > Aus Stufe 1 Stufe 2 and the standard cutting data via software 	 "higher material tolerance and material efficiency" cooling of the process environment with water (special cutting head and special nozzles)
Application field	 Mild steel from 1mm to 20mm Stainless steel from 1mm to 10mm 	 only mild steel from 15mm up to max. thickness
How to use when cutting bad material?	Step 1 when cutting low quality material	Step 2 , if AdjustLine is not enough to ensure process stability. It is possible to combine CoolLine and AdjustLine in step 3 .
How to use for higher <u>material efficiency</u> ?		Single possibility for higher contour flexibility and more efficient nesting.

CoolLine © TRUMPF - vertraulich

TW254rr/ki - October 2011

TRUMPF


What is included in CoolLine?

Option CoolLine includes:

- 1 separate cutting head with focal length 250mm (The maschine identifies this cutting head as a CoolLine head. It has another ceramic body for the nozzle adaptor and can only used for CoolLine)
- A total of 9 CoolLine-nozzles:
 - 9 nozzles with different diameters included in delivery extent (3 nozzles each: 1,4 / 2,0 / 2,3 mm)
 - Nozzles are not compatible with nozzles changer
- 1 water tank and water delivery to cutting head by UTI: The cutting head is changed like every cutting head, the water delivery is integrated in UTI (cutting head adapter).

Benefit of CoolLine in competitive comparison

	TRUMPF CoolLine	Amada WACS
Technical	Total integration in TRUMPF cutting head	No integration, external water leading by
conversion	technology	separate pipe (red mark in the picture above)
Robustness / Wastage	Integrated system	Seperate pipe behind the working process (wear?)
Collision protection	existing	No solution known
Rebuiliding complexity	Facile and very fast cutting head changing by UTI-serial interface	Not known in detail, but many different steps necessary

CoolLine © TRUMPF - vertraulich

TW254rr/ki - October 2011